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Abstract. The rigorous and efficient determination of the global solution of a nonconvex

MINLP problem arising from product portfolio optimization introduced by Kallrath (2003) is
addressed. The objective of the optimization problem is to determine the optimal number and
capacity of reactors satisfying the demand and leading to a minimal total cost. Based on the

model developed by Kallrath (2003), an improved formulation is proposed, which consists of a
concave objective function and linear constraints with binary and continuous variables. A
variety of techniques are developed to tighten the model and accelerate the convergence to the
optimal solution. A customized branch and bound approach that exploits the special math-

ematical structure is proposed to solve the model to global optimality. Computational results
for two case studies are presented. In both case studies, the global solutions are obtained and
proved optimal very efficiently in contrast to available commercial MINLP solvers.

Key words: Branch and bound, Concave objective function, Global optimization, Mixed-
integer nonlinear programming (MINLP), Piece-wise linear underestimator, Portfolio opti-
mization

1. Introduction

The modeling of decision making in many processes, such as the design of
chemical plants, often leads to nonconvex mixed-integer nonlinear pro-
gramming (MINLP) problems. The solution of this class of problems is
very challenging due to the presence of both the integer variables and the
nonconvexities. A number of approaches have been proposed for the solu-
tion of such problems within the branch and bound framework. For exam-
ple, Adjiman et al. (2000) introduced a powerful theoretical and
algorithmic framework based on the aBB global optimization approach for
twice-differentiable nonlinear programming (NLP) problems (Adjiman
et al., 1998). Adjiman et al. (2000) developed two broadly applicable
algorithms for the solution of nonconvex MINLPs: a special structure
mixed-integer aBB algorithm (SMIM-aBB) for problems with general non-
convexities in the continuous variables and restricted participation of the
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binary variables, and a general structure mixed-integer aBB algorithm
(GMIN-aBB) for the broader class of problems whose continuous relax-
ations are twice-differentiable. Westerlund et al. (1998) proposed a new the-
oretical and algorithmic approach, the extended cutting plane algorithm,
for addressing problems with pseudoconvex functions. Ryoo and Sahinidis
(1996) developed a standard branch-and-reduce algorithm, in which they
introduced domain reduction through feasibility and optimality tests.
Smith and Pantelides (1999) introduced a reformulation/spatial branch-
and-bound algorithm for mathematical models that feature factorable con-
tinuous functions and binary variables. For a comprehensive discussion of
the theoretical, algorithmic, and application related issues for global opti-
mization problems that include mixed-integer nonlinear optimization mod-
els, interested readers are referred to Horst and Tuy (1996) and Floudas
(2000).
In this work, we address the global solution of a nonconvex mixed-inte-

ger nonlinear programming (MINLP) problem arising from product port-
folio optimization. The problem and related data are taken from Kallrath
(2003). This nonlinear nonconvex portfolio optimization problem contains
a design problem (determining the number and sizes of chemical reactors)
coupled with an assignment problem (assigning products to reactors). Kall-
rath (2003) developed a nonconvex MINLP model featuring concave terms
in the objective function and trilinear products in the constraints. Kallrath
(2003) attempted to address this problem using two types of approaches:
(i) a mixed-integer linear programming (MILP) representation with equiva-
lent linear constraints and an approximate objective function; and (ii) two
commercial MINLP solvers, including a local solver, SBB, and a global
solver, BARON. The former approach was able to generate good solu-
tions, but essentially only solved an approximation of the original problem
and could neither estimate nor reduce the gap between the obtained
approximate solutions and the real optimal ones. While in the latter
approaches, both solvers employed performed very poorly due to weak
lower bounds. They required a substantial amount of computational time
for a small case study and could not find the optimal solution within many
CPU hours for a large case study (see Kallrath, 2003).
In this paper we present an improved formulation and a customized

branch and bound approach to address this portfolio optimization prob-
lem, which is able to solve it to global optimality rigorously and efficiently.
The rest of this paper is organized as follows. Section 2 presents the prob-
lem of interest. Section 3 contains an improved mathematical model based
on the one developed in Kallrath (2003) and proposes a global optimiza-
tion framework. Section 4 describes in detail the global solutions of two
case studies and compares the proposed approach with previous ones, fol-
lowed by concluding remarks in Section 5.
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2. Problem Description

Taken from Kallrath (2003), the portfolio optimization problem of interest
is as follows. A business unit operating a number of batch reactors wants
to analyze the dependence of investment and fixed costs on given demand
spectra. In this paper we analyze two different scenarios: one includes a rel-
atively large number of products (i.e., about 40 products) and the other
involves a ‘‘lean assortment’’ with fewer products (i.e., about 20 products).
The analysis should determine cost minimal solutions. In addition to the

costs, the following detailed results are expected:

– the number of reactors required and the number of batches per reac-
tor;

– the volumes of the reactors;
– which batches are produced on a certain reactor;
– the utilization rates of the reactors;
– surplus production with respect to the demand.

The solution defines the optimal production configuration, and, in a second
step, will help to perform product portfolio analysis.
The production configuration is subject to the following constraints:

1. The demand for 20 and 40 products, specified per week and per
product, needs to be satisfied.

2. All products are subject to shelflife limits. Actually, the products can
be stored for about one week; if they are properly cooled they can
survive a few more days.

3. All products are produced in batches of 6 h.
4. The feasible volumes of the reactors are in the range between 20 and

250m3.
5. The filling degree or utilization rate needs to be at least 40%.

For each reactor, the fixed cost and the investment cost are known.
Regarding the fixed costs, we should note that one person can control two
reactors. The investment cost is given by a nonlinear concave function
which relate the cost to the volume of the reactor. It is sufficient to con-
sider investment costs which are qualitatively correct. The most important
structural feature is that the investment-cost-versus-reactor-volume func-
tion is concave. Storage tanks are not included in our model and
costs related to the production process and the storage tanks are not
considered.
The following input data determine the size of the problem:

– the potential number of the reactors is between 2 and 4;
– the number of products is in the range between 20 and 40;
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– the maximal number of batches per reactors is 28, which results from
the number of hours available per week (168).

3. Mathematical Model

Based on the model in Kallrath (2003), an improved mathematical formu-
lation is developed and will be discussed in detail as follows.

3.1. BASIC FORMULATION

First, we define the following indices, sets, and parameters:

Indices and sets
p 2 P products
r 2 R reactors

Parameters

Costs
CF

r [kEuro/week] fixed cost of reactor r; 2.45 for all reactors
CI

r [kEuro] investment or depreciation cost per m3 for reactor r per
week; 0.97 for all reactors

Capacities and other production data
CT

r [hours] time capacity of reactor r; usually 168 h (full week)
TP
p [hours] time required to produce one batch of product p; 6 for all

products and all reactors

Demand data
Dp [m3] demand for product p per week; varies between 2 and 15,000
S surplus production allowed relative to the demand; 1 for all products

Reactor data
VL

r [m3] lower limit on the reactor volume if reactor r is active; 20
for all reactors

V u
r [m3] upper limit on the reactor volume if reactor r is active; 250

for all reactors
FðUL

r Þ lower limit on the utilization rates; 0.4 for all reactors

We introduce the following variables:

Variables
dr binary variable, selection of reactor r
vr [m3] reactor volume of reactor r
nrp number of batches for product p in reactor r
prp [m3] production of product p in reactor r

Based on this notation, the objective function and the constraints are for-
mulated as follows:
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Reactor volume bounds

VL
r � drOvrOVU

r � dr; 8r 2 R ð1Þ
The reactor volume is bounded by the given limits if a reactor is selected.

Production limits

nrp � vr � FO prp O nrp � vr; 8r 2 R; p 2 P ð2Þ
The amount of production of each product in each reactor is bounded by
the upper and lower limits of filling degree. Note that by introducing vari-
able prp to replace the trilinear product nrp � frp � vr in the model of Kallrath
(2003), the model now contains only bilinear products nrpvr between an
integer variable and a continuous variable, which can be further linearized
(see detail in the next section).

Demand fulfillment

DpO
X

r2R
prpOð1þ SÞDp; 8p 2 P ð3Þ

The demand for each product needs to be satisfied; on the other hand, sur-
plus production is only allowed within a given limit.

Reactor timeX

p

nrp � TP
pOcTr � dr; 8r 2 R ð4Þ

The total time a reactor is used cannot exceed the available time.
Objective function: minimization of all costs

min cT :¼
X

r2R
CF

r � dr þ
X

r2R

ffiffiffiffiffiffiffiffiffiffiffiffiffi
CI

r � vr
q

ð5Þ

The total cost consists of two parts. One is the fixed cost represented by
the first term; the other is the investment cost, which depend nonlinearly
on the volume of the reactors, as given by the second term. Note that the
second term does not need to have the binary variables indicating the selec-
tion of the reactors because the reactor volume is enforced to be zero by
constraints (1) if a reactor is not selected.
The following additional constraints proposed in Kallrath (2003) to

improve the model are also included:

Breaking the symmetry of reactors

vrOvrþ1 8r 2 R; r 6¼ NR ð6Þ
Total reactor volume requirement

28
X

r2R
vrP

X

p2P
Dp: ð7Þ
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3.2. LINEAR TRANSFORMATION

Each integer variable nrp can be represented by a set of binary variables as
follows:

nrp ¼
X

d2D
nBrpd � 2d ð8Þ

where d 2 D is the dth digit of a binary number and nBrpd is a binary vari-
able that determines the value of the dth digit of the binary representation
of nrp.
Constraints (2) consist of bilinear products between an integer variable

and a continuous variable (i.e., nrp � vr). The integer variables can be
replaced by its binary representation (8), which leads to bilinear products
between a binary variable and a continuous variable, nBrpd � vr. To transform
the bilinear terms to a linear form, we introduce a set of auxiliary continu-
ous variables, xrpd, to replace the bilinear terms, and a set of additional lin-
ear constraints as follows (Floudas, 1995):

vr � vUr ð1� nBrpdÞO xrpdOvr � vLr ð1� nBrpdÞ
vLr � nBrpdOxrpdOvUr � nBrpd 8r 2 R; p 2 P:

ð9Þ

Note that similar techniques were proposed in Kallrath (2003) to transform
the trilinear products in their original model to equivalent linear forms.

3.3. FURTHER TIGHTENING OF THE MODEL

To reduce the computational efforts required to obtain the optimal solu-
tion, a number of additional constraints have been identified to tighten the
mathematical model.
It is found that restricting the number of batches for each product in all

of the reactors and/or in each reactor in a reasonably tight range, as repre-
sented by the following constraints, can tighten the model significantly.

NL
p O

X

r2R

X

d2D
nBrpd � 2dONU

p ; 8p 2 P ð10Þ

NL
rpO

X

d2D
nBrpd � 2dONU

rp; p 2 8P; r 2 R ð11Þ

where NL
p and NU

p are the lower and upper bounds on the number of
batches for product p, respectively; NL

rp, and NU
rp, are the lower and upper

bounds on the number of batches for product p in reactor r, respectively.
When we derive the range for the number of batches of each product in

each reactor, the following insight is used: to utilize the reactors as effi-
ciently as possible, products with larger demands should be processed in
the larger reactors as much as possible and the products with smaller
demands should be processed in the smaller reactors. By ordering the
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product demands and assigning them to the reactors based on the above
principle, much tighter ranges can be derived. However, it should be
pointed out that this does not mean the larger demands should be handled
only in the largest reactor since the demand may not be an integer number
times the reactor volume and hence there may be a small amount which
leads to usage of the smaller reactors.
Furthermore, it can happen that there are products with the same

amount of demand. To eliminate the resulting degeneracy, we can break
the symmetry as follows. Assume that products p and p0 have the same
amount of demand and p precedes p0 in set P, and there are three reactors,
then the following constraints are introduced:

nr1;p � 282 þ nr2;p � 28þ nr3;pOnr1;p0 � 282 þ nr2;p0 � 28þ nr3;p0 : ð12Þ
By reducing the feasible region and cut off degenerate solutions, the above
model-tightening techniques help to accelerate substantially the conver-
gence to the optimal solution.

3.4. LOWER-BOUNDING PROBLEM AND BRANCH AND BOUND FRAMEWORK

It should be pointed out that the mathematical formulation described above
leads to a nonconvex MINLP problem with the following characteristics:

(i) the objective function consists of univariate concave terms and a con-
stant term;

(ii) all the constraints are linear.

A lower bounding problem can be constructed by underestimating the
concave objective function with piecewise linear approximations (Floudas,
1995). As an example, consider the following three-piece linear approxima-
tion of

ffiffiffi
v
p

over the range of c1OvOc4:

CðvÞ ¼
a1 þ b1 � v; for c1OvOc2
a2 þ b2 � v; for c2OvOc3
a3 þ b3 � v; for c3OvOc4

8
<

: ð13Þ

where

a1 ¼
ffiffiffiffi
c1
p � b1 � c1; b1 ¼

ffiffiffiffi
c2
p � ffiffiffiffi

c1
p

c2 � c1
;

a2 ¼
ffiffiffiffi
c2
p � b2 � c2; b2 ¼

ffiffiffiffi
c3
p � ffiffiffiffi

c2
p

c3 � c2
;

a3 ¼
ffiffiffiffi
c3
p � b3 � c3; b3 ¼

ffiffiffiffi
c4
p � ffiffiffiffi

c3
p

c4 � c3
:

We introduce binary variables y1, y2, y3, each one associated with a segment
of the variable range, and continuous variables v1, v2, v3. Then the above
piecewise linear function can be modeled by the following linear system:
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CðvÞ ¼ ða1 � y1þb1 � v1Þþða2 � y2þb2 � v2Þþða3 � y3þb3 � v3Þ
v ¼ v1 þ v2 þ v3

c1 � y1Ov1Oc2 � y1
c2 � y2Ov2Oc3 � y2
c3 � y3Ov3Oc4 � y3
y1 þ y2 þ y3 ¼ 1
y1; y2; y3 are binary variables.

8
>>>>>>>><

>>>>>>>>:

ð14Þ

The resulting lower bounding problem is a mixed integer linear program-
ming (MILP) problem which can be solved efficiently.
A branch and bound framework can then be used to solve for the glo-

bal solution of the problem, which relies on the convergence between the
lower bounds obtained by solving the lower bounding MILP problem
and the upper bounds which are feasible solutions of the original MINLP
problem (for more details of the branch and bound framework, see Flou-
das, 2000). Note that the constraints remain the same in the lower
bounding problem and therefore any feasible solution obtained from the
lower bounding problem is also a feasible solution of the original prob-
lem and the value of the objective function of the original problem,
which can be obtained by simple function evaluation, provides a valid
upper bound.

4. Computational Results of Specific Case Studies

Two different sets of demand data, taken from Kallrath (2003), are studied
in this work. The data is given in Table 1. The mathematical models in this
work are formulated with GAMS (Brooke et al., 1988) and the MILP
problems are solved with CPLEX 7.0 (ILOG, Inc., 2000).

4.1. A SMALL CASE STUDY: SCENARIO 2

Two reactors are introduced and note that the bounds of the reactor vol-
umes can be tightened based on the total demand and the time capacity. A
total volume of 9860/28 = 352.14m3 is required, that is, v1 þ v2P352:14.
Because v2O250, v1P102:14; because v1Ov2, v2P176:07. In sum,

102:14Ov1O250; 176:07Ov2O250:

Based on the above ranges of reactor volumes and the product demands,
lower and upper bounds on the number of batches for each product can
be derived, as shown in Table 2.
The concave terms in the objective function are underestimated with 4-

piece and 2-piece linear approximations. The branch and bound process
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requires only one iteration to solve the problem to global optimality with a
0.05% gap (i.e., the gap between the upper bound and the lower bound at
the root node of the branch and bound tree is within the stopping criterion
and hence the search procedure can be terminated right after solving the
root node). The MILP lower bounding problem consists of 69 binary vari-
ables, 124 continuous variables and 489 equations. The solution requires
1721 CPU s on an HP J-2240 workstation (note: the performance of this
machine is close to that of a Pentium III Intel based PC). The optimal

Table 1. Demand scenarios (unit: m3/week)

Product Scenario 1 Scenario 2

L1 2600 2600

L2 2300 2300

L3 450 1700

L4 1200 530

L5 560 530

L6 530 280

L7 530 250

L8 140 230

L9 110 160

L10 110 90

L11 10 70

L12 110 390

L13 90 250

L14 90 160

L15 90 100

L16 70 70

L17 50 50

L18 30 50

L19 10 50

L20 10 –

L21 10 –

L22 190 –

L23 180 –

L24 70 –

L25 70 –

L26 40 –

L27 40 –

L28 40 –

L29 30 –

L30 20 –

L31 20 –

L32 20 –

L33 10 –

L34 10 –

L35 10 –

L36 10 –

L37 10 –

Total 9870 9860
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solution is provided in Table 3 and the corresponding minimal total cost is
cT ¼ 31:809.

4.2. A LARGE CASE STUDY: SCENARIO 1

Three reactors are introduced and the bounds of the reactor volumes can
also be tightened. Because of the small demands of 10m3 (L11, L19–L21,
L33–L37), the upper limit on surplus production, S ¼ 1, and the lower
limit of utilization rates, 0.4, one reactor has to be smaller than 10(1+1)/
0.4=50m3. A total volume of 9870/28 = 352.5m3 is required, that is,
v1 þ v2 þ v3P352:5. It follows that v2 þ v3P302:5, and hence v2P52:5,
v3P151:25. In sum,

20Ov1O50; 52:5Ov2O250; 151:25Ov3O250:

The range of the number of batches for each product, which is derived
based on the ordering of product demands, is shown in Table 4.
The concave terms in the objective function are underestimated with

1-piece, 4-piece and 2-piece linear approximations. The branch and bound
process requires again only one iteration to solve the problem to global

Table 2. Ranges of number of batches for Scenario 2

Demand Products Reactor 1 Reactor 2 Reactor 1 and 2

(m3/week) 102.14–250 m3 176.07–250 m3

2600 1 (L1) 0–11 6–15 11–17a

2300 1 (L2) 0–11 5–14 10–16a

1700 1 (L3) 0–11 2–10 7–13a

530 2 (L4, L5) 0–6 0–4 3–6

390 1 (L12) 0–4 0–3 2–4

280 1 (L6) 0–3 0–2 2–3

250 2 (L7, L13) 0–3 0–2 1–3

230 1 (L8) 0–3 0–2 1–3

160 2 (L9, L14) 0–2 0–1 1–2

100 1 (L15) 1 X 1

90 1 (L10) 1 X 1

70 2 (L11, L16) 1 X 1

50 3 (L17–L19) 1 X 1

The third and fourth columns represent the number of batches for each product in Reactor 1 and Reactor

2, respectively; while the last column represents the total number of batches for each product in both

reactors. When there are two numbers in the form of NL–NU, they represent the lower and upper bounds

on the number of batches (e.g., for Product L1, the number of batches in Reactor 1 is in the range from 0

to 11); when there is only one number, it is the exact number of batches (e.g., for Product L17, there is

exactly one batch in Reactor 1); X means no assignment is needed/possible (e.g., for Product L17, no

batches are produced in Reactor 2).
aDerived based on the fact that at most 56 batches are available and the sum of the lower bounds is

already 50.
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optimality with 0 gap. The MILP lower bounding problem consists of 124
binary variables, 263 continuous variables and 984 equations. The solution
requires 741 CPU s on an HP J-2240 workstation. The optimal solution is
provided in Table 5 and the corresponding minimal total cost is
cT ¼ 37:176. Note that due to the dramatic effect of the bounds imposed
on the number of batches on the required computational time, we start
with the reduced ranges in Table 4, which use very tight upper bounds.
After the solution is obtained, the value of the number of batches for each
product is examined. If any upper bounds are hit, they are increased and
the problem is solved again, which leads to the same solution. This verifies
that the tightened bounds on the number of batches do not cut off poten-
tially better solutions and the global optimality of the obtained solution is
guaranteed.
It should be pointed out that for each scenario, the reactor volumes in

the solution given in this paper lead to the minimal total cost, however, in
terms of the assignment of products to reactors and production amounts,
the solution provided here may not be unique and can be one of the multi-
ple solutions that exist.

Table 3. Optimal sloution for Scenario 2

Product Demand Reactor 1: v1 = 132.5 m3 Reactor 2: v2 = 250m3

(m3/week) Production Batches Utilization

rate

Production Batches Utilization

rate

L1 2600 100 1 0.76 2500 10 1

L2 2300 1050 8 0.99 1250 5 1

L3 1700 0 0 – 1700 7 0.97

L4 530 530 4 1 0 0 –

L5 530 530 4 1 0 0 –

L6 280 53 1 0.40 250 1 1

L7 250 0 0 – 250 1 1

L8 230 0 0 – 230 1 0.92

L9 160 0 0 – 160 1 0.64

L10 90 90 1 0.68 0 0 -

L11 70 70 1 0.53 0 0 –

L12 390 390 3 0.98 0 0 –

L13 250 0 0 – 250 1 1

L14 160 0 0 – 160 1 0.64

L15 100 100 1 0.76 0 0 –

L16 70 70 1 0.53 0 0 –

L17 50 100 1 0.76 0 0 –

L18 50 100 1 0.76 0 0 –

L19 50 100 1 0.76 0 0 –

Total 9860 3283 28 6750 28

Total production: 10,033
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4.3. COMPARISON WITH PREVIOUS APPROACHES

Kallrath (2003) introduced the problem investigated in this paper and pre-
sented results obtained with three different approaches. In the first
approach, an MILP formulation was proposed to approximate the original
MINLP model, which used equivalent linear constraints and an approxi-
mate piecewise objective function. This MILP formulation was essentially
an approximation of the original problem. Due to this limitation, the solu-
tion was not accurate and no systematic method was proposed to evaluate
or reduce the gap between the obtained approximate solution and the real
optimal solution. Furthermore, it required a great amount of computa-
tional time to solve the MILP problem when the size of the model was
large in the large case study involving a relatively large number of prod-
ucts.
In the other two approaches, Kallrath (2003) attempted to employ two

commercial MINLP solvers connected to GAMS (Brooke et al., 1988) to
solve the problem. The first solver, SBB, is a local MINLP solver and uses
a branch and bound scheme. For the small case study, only suboptimal

Table 4. Ranges of number of batches for Scenario 1

Demand Products Reactor 1 Reactor 2 Reactor 3 Reactor 1, 2 and 3

(m3/week) 20–50 m3 52.5–250 m3 151.25–250 m3

2600 1 (L1) X 0–3 8–12 11–15

2300 1 (L2) X 0–3 7–11 10–14

1200 1 (L4) X 0–3 2–6 5–9

560 1 (L5) 0–2 0–4 0–4 3–4

530 2 (L6, L7) 0–2 0–4 0–4 3–4

450 1 (L3) 0–2 0–3 0–3 2–3

190 1 (L22) 0–2 0–2 0–2 1–2

180 1 (L23) 0–2 0–2 0–2 1–2

140 1 (L8) 0–2 0–2 0–1 1–2

110 3 (L9, L10, L12) 0–2 0–2 0–1 1–2

90 3 (L13–L15) 0–2 0–2 0–1 1–2

70 3 (L16, L24, L25) 0–2 0–1 0–1 1–2

50 1 (L17) 1–3 X X 1–3

40 3 (L26–L28) 1–2 X X 1–2

30 2 (L18, L29) 1–2 X X 1–2

20 3 (L30–L32) 1 X X 1

10 9 (L11, L19–L21, L33–L37) 1 X X 1

The third, fourth, and fifth columns represent the number of batches for each product in Reactor 1,

Reactor 2, and Reactor 3, respectively; while the last column represents the total number of batches for

each product in all of the three reactors. When there are two numbers in the form of NL–NU, they

represent the lower and upper bounds on the number of batches (e.g., for Product L1, the number of

batches in Reactor 2 is in the range from 0 to 3); when there is only one number, it is the exact number of

batches (e.g., for Product L11, there is exactly one batch in Reactor 1); X means no assignment is needed/

possible (e.g., for Product L11, no batches are produced in Reactor 2).
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solutions were generated after five hours of CPU time even when v2 was
fixed to the optimal value; for the large case study, only when very tight
bounds on v2 and v3 were used, could the solver find a solution, which was
still suboptimal. The second solver, BARON, is a global solver and applies
a branch and reduce framework. For the small case study, it required 12
CPU hours to find the optimal solution and then to prove the global

Table 5. Optimal solution for Scenario 1

Product Demand

(m3/week)

Reactor 1: v1 = 20 m3 Reactor 2: v2 = 100 m3 Reactor 3: v3 = 250 m3

Produc-

tion

Batches Utiliza-

tion rate

Produc-

tion

Batches Utiliza-

tion rate

Produc-

tion

Batches Utiliza-

tion rate

L1 2600 0 0 – 100 1 1 2500 10 1

L2 2300 0 0 – 50 1 0.50 2250 9 1

L3 450 0 0 – 200 2 1 250 1 1

L4 1200 0 0 – 200 2 1 1000 4 1

L5 560 0 0 – 100 1 1 460 2 0.92

L6 530 0 0 – 300 3 1 230 1 0.92

L7 530 0 0 – 300 3 1 230 1 0.92

L8 140 0 0 – 140 2 0.70 0 0 –

L9 110 20 1 1 90 1 0.90 0 0 –

L10 110 20 1 1 90 1 0.90 0 0 –

L11 10 20 1 1 0 0 – 0 0 –

L12 110 20 1 1 90 1 0.90 0 0 –

L13 90 0 0 – 90 1 0.90 0 0 –

L14 90 0 0 – 90 1 0.90 0 0 –

L15 90 0 0 – 90 1 0.90 0 0 –

L16 70 0 0 – 70 1 0.70 0 0 –

L17 50 50 3 0.83 0 0 – 0 0 –

L18 30 30 2 0.75 0 0 – 0 0 –

L19 10 20 1 1 0 0 – 0 0 –

L20 10 20 1 1 0 0 – 0 0 –

L21 10 20 1 1 0 0 – 0 0 –

L22 190 0 0 – 190 2 0.95 0 0 –

L23 180 0 0 – 180 2 0.90 0 0 –

L24 70 0 0 – 70 1 0.70 0 0 –

L25 70 0 0 – 70 1 0.70 0 0 –

L26 40 40 2 1 0 0 – 0 0 –

L27 40 40 2 1 0 0 – 0 0 –

L28 40 40 2 1 0 0 – 0 0 –

L29 30 30 2 0.75 0 0 – 0 0 –

L30 20 20 1 1 0 0 – 0 0 –

L31 20 20 1 1 0 0 – 0 0 –

L32 20 20 1 1 0 0 – 0 0 –

L33 10 20 1 1 0 0 – 0 0 –

L34 10 20 1 1 0 0 – 0 0 –

L35 10 20 1 1 0 0 – 0 0 –

L36 10 20 1 1 0 0 – 0 0 –

L37 10 20 1 1 0 0 – 0 0 –

Total 9870 530 28 2510 28 6920 28

Total production: 9960
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optimality; for the large case study, even after v3 was fixed to the optimal
value, the solver could only find a suboptimal solution still far away from
the optimal one after 77 h of CPU time. It is obvious that both solvers suf-
fer from very weak initial lower bounds and extremely slow convergence
between the upper bounds and the lower bounds.
Table 6 shows the comparison between the results from the aforemen-

tioned previous approaches and those from the approach we have pro-
posed in this paper. It is demonstrated clearly that the improved model
and the customized branch and bound approach is able to solve this non-
convex MINLP problem to global optimality rigorously and much more
efficiently.

5. Conclusions

In this work, we address the global solution of a nonconvex MINLP prob-
lem arising from product portfolio optimization introduced by Kallrath
(2003). The goal of the product portfolio analysis is to prove that complex
portfolios lead to more costly scenarios caused by the requirement of more
reactors. In order to do so we have formulated and solved optimization
models to determine the optimal configurations of reactors with the mini-
mal fixed and investment costs for two different scenarios of product
demands. The model proposed by Kallrath (2003) is improved and the

Table 6. Comparison of proposed approach with previous approaches

Approach Kallrath (2003) This approach

MILP

approximation

SBB BARON

Small case Binary var. 230 3 3 69

study (Scenario 2) Integer var. 38 38 38 –

Continuous var. 289 99 99 124

Constraints 1162 66 66 489

Obj. (cost) 31.66a 32.126b 31.809 31.809

Gap (%) n/a >1 0 0.05

CPU (s) <60c �18,000c �43,200c 1721d

Large case Binary var. 447 3 3 124

study (Scenario 1) Integer var. 111 129 129 –

Continuous var. 656 284 284 263

Constraints 2155 197 197 984

Obj. (cost) 37.176 38.506e 39.164f 37.176

Gap (%) n/a 2.5 12.8 0

CPU (s) �20,700c �300c �277,200c 741d

aInaccurate, exact value is 31.809. bObtained with v2 fixed. cPentium III 750 MHz. dHP J-2240 work-

station. eObtained with very tight bounds on v2 and v3.
fObtained with v3 fixed.
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resulting mathematical formulation consists of a concave objective function
and linear constraints with binary and continuous variables. A variety of
techniques are developed to tighten the model and accelerate the conver-
gence to the optimal solution. A customized branch and bound approach
is proposed to solve the model to global optimality. Computational studies
on the two scenarios are presented. In both cases, the global solutions are
obtained and proved optimal very efficiently (i.e., essentially in one itera-
tion), which demonstrate the effectiveness of the proposed approach.
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